spatially homogeneous - ορισμός. Τι είναι το spatially homogeneous
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι spatially homogeneous - ορισμός

UNIFORMITY OF A MATERIAL OR SYSTEM AT EVERY POINT
Homogeneous media; Homogeneous medium

Homogeneity (physics)         
In physics, a homogeneous material or system has the same properties at every point; it is uniform without irregularities.
Homogeneous coordinates         
MATHEMATICS
Homogenous coordinates; Homogeneous coordinate; Homogeneous co-ordinates; Homogeneous coordinate system; Projective coordinates; Homogeneous Coordinates; Homogenous coordinate
In mathematics, homogeneous coordinates or projective coordinates, introduced by August Ferdinand Möbius in his 1827 work ,August Ferdinand Möbius: Der barycentrische Calcul, Verlag von Johann Ambrosius Barth, Leipzig, 1827.
Homogeneous function         
  • continuous]], as shown by this example. This is the function <math>f</math> defined by <math>f(x,y) = x</math> if <math>xy > 0</math> and <math>f(x, y) = 0</math> if <math>xy \leq 0.</math> This function is homogeneous of degree 1, that is, <math>f(s x, s y) = s f(x,y)</math> for any real numbers <math>s, x, y.</math> It is discontinuous at <math>y = 0, x \neq 0.</math>
FUNCTION WITH MULTIPLICATIVE SCALING BEHAVIOUR
Homogenous function; Euler's homogeneous function theorem; Euler's theorem on homogeneous functions; Inhomogeneous function; Euler homogeneous function theorem; Euler theorem on homogeneous functions; Positive homogeneity; Positively homogeneous; Positively homogeneous function; Real homogeneity; Real homogeneous; Absolute homogeneity; Absolutely homogeneous; Strict positive homogeneity; Nonnegative homogeneity; Non-negative homogeneity; Non-negatively homogeneous; Nonnegatively homogeneous; Conjugate homogeneous; Conjugate homogeneity; Nonnegative homogeneous; Positive homogeneous; Complex homogeneous; Absolutely real homogeneous; Strictly positive homogeneous; Absolute real homogeneity; Homogeneous map; Absolute real homogeneous; Absolute homogeneous; Homogeneous over the rational numbers
In mathematics, a homogeneous function is a function of several variables such that, if all its arguments are multiplied by a scalar, then its value is multiplied by some power of this scalar, called the degree of homogeneity, or simply the degree; that is, if is an integer, a function of variables is homogeneous of degree if

Βικιπαίδεια

Homogeneity (physics)

In physics, a homogeneous material or system has the same properties at every point; it is uniform without irregularities. A uniform electric field (which has the same strength and the same direction at each point) would be compatible with homogeneity (all points experience the same physics). A material constructed with different constituents can be described as effectively homogeneous in the electromagnetic materials domain, when interacting with a directed radiation field (light, microwave frequencies, etc.).

Mathematically, homogeneity has the connotation of invariance, as all components of the equation have the same degree of value whether or not each of these components are scaled to different values, for example, by multiplication or addition. Cumulative distribution fits this description. "The state of having identical cumulative distribution function or values".